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ABSTRACT
Financial statements are rich sources of information for market anal-
ysis and investment decisions. Most financial statements consist of
unstructured text such as business descriptions and structured ta-
bles presenting numerical values of financial metrics. Recent studies
showed the challenge of answering financial questions due to the
difficulty of numerical reasoning over unstructured and structured
data. Many novel methods have been introduced to solve this task.
However, most existing approaches are data-demanding, which re-
quires a significant amount of annotation effort. We propose a new
system that answers questions with case-based reasoning (CBR) to
alleviate this issue. CBR is a class of approaches that solve new prob-
lems with solutions to existing problems. We propose to leverage
CBR such that annotated questions will be retrieved to provide can-
didate program patterns to an unseen question. The system leverages
the program patterns as auxiliary knowledge to generate executable
mathematical programs. Our approach decomposes the task into
three sub-steps: case selection that provides operation steps for the
question, fact retrieval that identifies relevant facts, and program
generation that completes the operation steps with the retrieved facts.
We conduct low-resource experiments on public financial question-
answering datasets and discuss the usefulness of the system.
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1 INTRODUCTION
Financial statements are a common way of recording situations and
activities of a company in past accounting periods. They are impor-
tant sources of information for investors and analysts to understand
a company or an industry for making better financial decisions. For
example, the growth rate of the net revenue in the past years is use-
ful for predicting the net revenue of the incoming year; a specific
expense is useful for understanding the company’s future plans; the
difference in the net income between multiple companies from the
same industry is important for understanding this industry. With
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Figure 1: An example of case-based reasoning for Financial QA.
The two questions have different answers but require the same
list of operations to produce answers.

the increasing number of companies, it becomes more and more
challenging to manually review and analyze financial statements.

In recent years, with the development of machine-learning tech-
niques, researchers started to pay attention to designing automated
machine-learning models to solve knowledge-intensive problems
that leverage financial statements. One popular and challenging task
for financial data is Question Answering (QA). Given a financial
question, an automated system is expected to either select a span of
text from the financial statements or produce a program consisting of
a series of mathematical operations. Most prior work [3, 10] follows
the retriever-generator paradigm such that a neural retriever retrieves
relevant information pieces from the statements, and a generator
generates programs using the retrieved information. To achieve a
good performance on program generation, machine learning models
usually require a large number of annotations for all possible types
of programs. However, annotating a single question demands one or
multiple financial experts to review the whole financial statement,
which is generally resource-consuming.

In this paper, we propose to study the financial QA task in low-
resource settings. For the first time, we propose to apply a classic
AI paradigm, Case-based Reasoning (CBR) [9], for our task. CBR
is a class of approaches that leverage existing annotated data for
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solving new problems. CBR has been used for many other tasks
such as KBQA [4]. Figure 1 shows an example of CBR for our task.
Given an unseen question, we use CBR to identify similar annotated
questions and use the annotated programs as auxiliary supervision to
generate programs for the new question. Our approach is also similar
to demonstration-based learning [2] which is to use a few training
examples in natural language prompts for better model learning.

We introduce a novel CBR-based framework that consists of a
case selector, fact retriever, and program generator. Given an unseen
question, we first use the case selector to select a program pattern
from annotated examples, and then apply the fact retriever to select
relevant sentences from the whole financial statements. Combining
the program pattern and the relevant facts, the program generator is
incorporated to generate programs that can be executed to provide
final answers. In the proposed framework, program patterns serve as
auxiliary supervision for better program generation.

We investigate on different case selection strategies: 1) word-
pattern co-occurrence (the frequency of the existence of a word
in the questions per program pattern), 2) dense embedding (the
similarities between low-dimensional question embedding vectors),
and 3) two-step selection (selecting with dense embedding and fil-
tering with word-pattern co-occurrence matrix). We conduct our
experiments on two public benchmark datasets FinQA [3] and Mul-
tiHierTT [10] involving both textual and tabular data for answering
questions. Our experiments show that a good case selector can
lead to a performance boost with the same base models.

In this paper, as the first attempt, we explore low-resource finan-
cial QA by 1) proposing to replace the retriever-generator with a
novel selector-retriever-generator framework, 2) introducing differ-
ent case selection strategies for providing additional supervision
for program generation, and 3) investigating different strategies and
conducting experiments on public benchmark datasets.

2 RELATED WORK
There are two lines of research that is closely related to this paper.

Financial QA. The task of financial QA on text and tables be-
comes popular in recent years. A few datasets [3, 10, 11] along
with approaches were introduced to solve the problem. The datasets
usually include two types of questions: span selection and program
generation. The prior one identifies a span of text from financial
statements (i.e.what is the income in 2020?), and the later one uses
numerical values from the statements to produce multi-step mathe-
matical operations which lead to the final answer (i.e.How much did
the cost increase from 2020 to 2021?). Existing works mostly follow
the retriever-generator paradigm to solve the problem. For example,
Chen et al. [3] uses a neural retriever to retrieve sentences from lin-
earized tables and text, and learn a RNN-based generator; Lei et al.
[7] applies a graph-based encoder to select information pieces and a
tree-based decoder to generate programs; to differentiate different
types of questions from each other, Zhu et al. [11] and Zhao et al.
[10] also incorporate a classifier to predict question type and learn
separate generators to solve different types of questions.

Case-based Reasoning. CBR [1, 6, 9] is a class of approaches
that solve new problems based on the solutions to existing problems.
CBR has been used in different domains/tasks. For example, Das

et al. [4] uses CBR to retrieve sub-graph patterns and answer knowl-
edge graph-based questions. Following existing CBR techniques,
our framework retrieves program patterns of annotated examples to
serve as auxiliary supervision during program generation.

3 CBR FOR FINANCIAL QA
In this section, we describe the three components of the proposed
system: Case Selector, Fact Retriever, and Program Generator.

3.1 Case Selector
Let the training set be𝑇𝑡𝑟 . Each example 𝑒𝑖 ∈ 𝑇𝑡𝑟 includes a question
𝑞𝑖 , a set of facts 𝐹𝑖 = {𝑓𝑖1 · · · 𝑓𝑖𝑛} and a program 𝑝𝑖 consisting of one
or more mathematical operations over numbers. Given a test question
𝑞, the case selector aims to identify the most similar case 𝑒𝑘 from
the training set such that answers to 𝑞 can be generated following
mathematical steps in the program 𝑝𝑘 . The intuition of this module
is that similar questions might follow the same operation steps even
though different numbers should be used to answer the question. To
obtain the program pattern from the annotated program, we simply
mask numbers with a special token #. For example, if an annotated
program is Add(100, 200), Subtract(#1, 500), the pat-
tern to the program will be Add(#, #), Subtract(#1, #).
The pattern will then be used in the next steps. To retrieve such
patterns, we explore the following three different approaches:

Word-Pattern co-occurrence. Given the fact that many financial
questions use similar words (i.e. percent, difference, etc), a natural
way to select cases is to consider the frequency of the co-occurrence
of each word-pattern pair. More specifically, given 𝑛 training ex-
amples 𝑄 = {(𝑞1, 𝑝1), (𝑞2, 𝑝2), · · · , (𝑞𝑛, 𝑝𝑛)} where 𝑞𝑖 is a question
and 𝑝𝑖 is the corresponding program pattern. Each question is rep-
resented as a list of tokens (for simplicity, we split a question into
words and treat each word as a token). For each token and program
pattern pair, we assign a weight based on the frequency of the co-
occurrence of the pair in the training data. For each token 𝑤 , if it
appears 𝑡𝑤 times in questions that are answered with the pattern 𝑝,
the weight of (𝑤, 𝑝) is 𝑡𝑤 . The weights are then normalized over
patterns. Given an unseen question, based on the set of tokens appear
in the question, this approach ranks all seen program patterns based
on weights of the co-occurrence matrix.

Dense embeddings. Similar to neural retrievers that are com-
monly used for open-domain question answering, another option to
select cases is to use language models to represent questions and
select questions based on the similarities between the embedding
vectors. During inference, we create an index for all training ques-
tions based on their representations and efficiently select the most
similar question as the example for each individual test question.

We use a pre-trained dense passage retriever (DPR) as the base
model for representing questions. To fine-tune the model, for each
candidate pattern, we randomly select a few questions as anchor
questions. For each question, we then randomly sample a question
with the same program pattern as a positive sample, and another
question with a different pattern as a negative sample. The model is
fine-tuned to make the anchor questions more similar to the positive
samples than the negative samples.
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Figure 2: The case selection process. Normal and dotted arrows represent the training and inference steps, respectively. During training,
the selector 1) gets word-pattern scores, 2) group questions based on their program patterns in order to create positive/negative pairs
for fine-tuning, and 3) fine-tune the BERT-based model. During inference, the selector 1) index all training questions with the fine-tuned
model, 2) retrieve top-k questions for a test question, and 3) filter the top-k questions with the word-pattern matrix.

Two-step Selection. In addition to the two separate approaches,
we also explore a hybrid approach that leverages both dense em-
beddings and word-pattern co-occurrence scores. Given an unseen
question, the approach first retrieves top-𝐾1 most similar questions
with dense embeddings. In the second step, the system leverages the
co-occurrence matrix to select top-𝐾2 patterns as a filtering set: only
retrieved questions that have patterns in the top-𝐾2 list are kept in
the final example list. The most common pattern in the final list is
then passed to the generator as auxiliary supervision. Figure 2 shows
the details of both the training and inference procedures.

3.2 Fact Retriever
Following previous studies, we apply a BERT-based classifier as
the fact retriever. The goal of fact retrieving is to select the most
important and relevant pieces of information from both tabular and
textual data to answer questions. To better leverage pre-trained lan-
guage models, prior approaches [3, 10] apply a linearization step for
tabular data. We also use this strategy in our system. More specifi-
cally, given a table, we convert the table into facts by concatenating
each cell value with the corresponding top and left attributes. For
example, if the first row (top attributes) of a table has a cell “number
of shares”, and the first column (left attributes) of the table has a
cell “granted”, the corresponding cell on the same row as “granted”
and the same column as “number of shares” is then be verbalized as
“granted number of shares is xxx”.

The question and individual facts are then concatenated and
passed to a BERT-based model. The model is fine-tuned to assign the
relevant facts a label “1” and irrelevant ones “0”. During inference,
all given facts are assigned a score, and the top-k facts are selected
and will serve as part of the input to the program generator.

3.3 Program Generator
The last component leverages the outputs from the previous two
components. We fine-tune a generative language model to generate

final programs. The input to the model consists of the natural lan-
guage question, the selected program pattern, and the retrieved facts.
Let 𝑞 be the question, 𝑝 be the pattern and 𝐹 be the set of facts. The
input 𝑥 to the model is:

“question: what percent of the balance was used on payments?
pattern: [ divide # # ] context: the balance on payments is 100
context: the total balance is 200 ...”.

The output 𝑦 from the model is expected to be “divide 100 200”.

4 EXPERIMENTS
Our experiments are mainly designed to evaluate the effectiveness
of CBR for the financial QA task.

4.1 Settings
We use the same fact retriever as MT2Net [10]. The retriever is a
BERT-based model fine-tuned as a bi-classifier. We use RoBERTa-
base as the base model and follow the default parameter settings
as MT2Net. For each question and all given supporting facts, the
fact retriever selects top-N facts. We use a pre-trained DPR [5] for
case selection. We set the learning rate to 1e-5, batch size to 32,
and train the model for 20 epochs. During inference, the neural
retriever selects 50 cases, the sparse selector keeps questions with
the top-20 most likely patterns, and the program generator uses the
most common one among the top-10 of them as the final pattern.
For program generation, we use T5-base [8] as the base model. We
set the learning rate to 5e-5, batch size to 2, and train the model for
60 epochs. To evaluate our approach under low-resource scenarios,
for each program pattern, we randomly sample 𝑘 questions from
the complete training set and use the selected questions to train all
models. We set 𝑘 to be 5, 10 and 20.

4.2 Datasets
We evaluate our system with two public financial QA datasets:
1)FinQA each example includes a question, a table and a set of texts
around the table in the financial document. To answer the question,
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MultiHierTT FinQA
5 10 20 5 10 20

MT2Net 0.02 0.02 0.07 0.05 0.05 0.06
Ours w/o CBR 0.02 0.07 0.10 0.08 0.10 0.16
Ours w/ CBR 0.04 0.10 0.14 0.10 0.15 0.16

Table 1: Results of different sample numbers per pattern.

MultiHierTT FinQA
5 10 20 5 10 20

Word 8.6 11.7 24.0 6.3 10.3 13.8
Dense 17.1 27.0 27.8 16.5 22.3 26.9

Ensemble 15.4 26.8 37.5 17.1 26.7 33.1
Vote 17.2 25.6 35.6 18.8 28.7 34.4

Table 2: Ablation Study on different case selection approaches.

we need to use both tabular and textual information. 2)MultiHierTT
Each example includes a question, multiple tables with more com-
plex hierarchies, and a set of texts around the tables.

4.3 Experimental Evaluation
We conduct the following experiments:

Experiment 1: Overall Low-resource settings w/ and w/o CBR.
In this experiment, we show the effect of the retrieved patterns on
the overall performance with a limited number of annotations. For
each program pattern, we select 5, 10, and 20 samples, that use the
pattern to answer questions, to train the model. We evaluate the
model on all test questions. For FinQA, we use the public test set,
and for MultiHierTT, we use the public development set. We also
provide results of MT2Net as a baseline. Table 1 shows the results.
Compared to both the baseline model and the variant without CBR,
our approach consistently achieves better performance. The results
indicate that program patterns potentially provide useful information
for generating programs.

Experiment 2: Ablation Study on Case Selection Approaches. We
show the case selection performance for 1) sparse selector (word-
pattern co-occurrence), 2) dense retriever, 3) the ensemble approach
of 1) and 2), and 4) the final selection with majority vote. We use
Hit@1 as the evaluation metric: if the program patterns match, then
we treat it as a hit. We report the results in Table 2. In general, the
dense selector performs much better than the sparse selector. With
the sparse selector as the filtering model, the ensemble approach
achieves even better performance. Lastly, the majority vote also
boosts the performance in most cases.

Experiment 3: Further Analysis on the Effect of Case Selector. We
further conduct experiments to show the ideal performance of CBR
in the same low-resource setting. We compare the end-to-end results
of our automated case selector and an oracle selector in Table 3.
For both datasets, the oracle selector results in significantly better
performance than the default setting. These results indicate that a

MultiHierTT FinQA
5 10 20 5 10 20

Ours 0.04 0.10 0.14 0.10 0.15 0.16
Oracle 0.13 0.20 0.25 0.26 0.30 0.37

Table 3: Analysis on the effect of case selection.

better case selector can greatly assist in QA performance. We hope
this finding helps open up a new research direction for financial QA.

5 CONCLUSIONS
In this paper, we propose a novel approach for financial QA with
case-based reasoning (CBR). Our approach uses the annotations
of seen questions to provide auxiliary supervision during program
generation for unseen questions. As an initial attempt, we leverage
an ensemble case selection approach using both a neural retriever
and a word-level sparse selector. We show the effectiveness of CBR
in financial QA on two public benchmark datasets. Our experimental
results indicate that better case selectors lead to better QA per-
formance. One promising future direction is to improve the case
selection procedure with rich structural information.
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